Math Logic: Model Theory \& Computability
Lecture 29
(oor. (a) Primitive recursive nelctious form a Boolean aleghra, i.e are closed unclec coaplements all finite uniocs/intersections.
(b) Primitive recursine functiocs are closed ualer bhefinitions bs caser. Proos. HW.

Prop. The clan ot primitive recursive tunctions is closed under bouncled seach, i.e. if $R \subseteq \mathbb{N}^{k} \times \mathbb{N}$ is pimitive recarsive, the 10 is the thation $f: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(\vec{a}, b):=\mu_{x<b}(R(\vec{a}, x)):= \begin{cases}\mu_{x}(R(\vec{a}, x)) & \text { if } \exists x<b R(\vec{a}, x) . \\ b & \text { othervibe }\end{cases}$
In particalur, the clon of primitive recassive relatios is closed unclec bod saantifiction, i.e. if $R \subseteq \mathbb{N}^{k} \times \mathbb{N}$ prive. rec. Then so are $\exists y<z R(\vec{x}, y)$ and $\forall y<z R(\vec{x}, y)$.

Poof. $f(\vec{a}, 0)=0$ and $f(\vec{a}, b+1)=\left\{\begin{array}{cl}f(\vec{a}, b) & \text { if } f(\vec{a}, b)<b \\ b & \text { if } f(\vec{a}, b)=b \text { and } R(\vec{a}, b) \\ b+1 & \text { orherwise }\end{array}\right.$
For bdel quantiticution, it's wough ho prove hf $Q(\vec{x}, z): \Leftrightarrow \exists y<z R(\vec{x}, s)$ is pim. rec. $\left.B_{c}+\mathbb{1}_{Q}(\vec{x}, z)=\mathbb{1}_{<}\left(\mu_{j<z}(R \mid \vec{x}, y)\right), z\right)$.
loc. ta bödel Branction as well as all cocling/desocling tunctiong ace prinitive necarsive.
Proot. The search operation involved is the defir, Tioss of there fanchions is boundel. Detcils litt an HEW.

Cor(Nocmal form forfanctions). Every couputable tantion $f: \mathbb{N} \mathbb{N}^{k} \rightarrow \mathbb{N}$ is of the form

$$
f(\vec{a})=\left(\mu_{x}(R(\vec{a}, x))_{0}=\left(\mu_{x}(g(\vec{a}, x)=0)\right)_{0}\right.
$$

weer $R \subseteq \mathbb{N}^{k} \times \mathbb{N}$ s, primitive recursive an the search g_{x} is safe, ie. for each $\vec{a} \in \mathbb{N}^{k}$ Here is $x \in \mathbb{N}$ with $R(\vec{a}, x)$, an $g:=\overline{b_{i t}} \circ \mathbb{1}_{R}$ is also prim. rec.

Proof. We pave by inclaction on the incluctive defrition/woplecuity of copetable fuahions. First note that if F is already primitive recursive, then it is of the desired form benne:

$$
f(\vec{a})=\left(\mu_{x}\left((x)_{0}=f(\vec{a})\right)\right)_{0}=\left(\mu_{x}\left(\mathbb{1}_{f}\left(\left(x x_{0}, f(\vec{a})\right)\right)=0\right)\right)_{0} \text {. }
$$

since we have already clown ht all basic confutable taction in (C1) are prow. celursicu, we're clan with the base cane.

For $(c 2)$, suppose ht $f=g\left(h_{1}, \ldots, h_{l}\right)$ where each $h_{i}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ al $g: \mathbb{N}^{l} \rightarrow \mathbb{N}$ ane coupatable aud ane of the desired form:

$$
g(\vec{b})=\left(\mu_{y}(R(\vec{b}, j))\right)_{0} \text { and } h_{i}(\vec{a})=\left(\mu_{x_{i}}\left(R_{i}\left(\vec{a}, x_{i}\right)\right)\right)_{0} \text {. }
$$

Then $f(\vec{a})=\left(\mu_{z}\left(\ln (z)=l+2 \wedge(z)_{0}=\frac{y}{(z)_{l+1}}\right)_{0} \wedge \forall i<l\left(\left(R_{i}\left(\vec{a},(z)_{i+1}\right)\right.\right.\right.$ and

$$
\begin{aligned}
& \text { Then } 1(\vec{a})=\left(J_{z}\right) \operatorname{un}(z)=l+<\wedge(z)_{0}=\left((t)_{l+1}\right)_{0} \wedge \forall i<\ell\left(\left(K_{i}\left(a,(z)_{i+1}\right)\right.\right. \text { and } \\
& \left.\left.\left.\left.\left.\forall x_{i}<(z)_{i+1} \neg R_{i}\left(\vec{a}, x_{i}\right)\right) \wedge R\left((z)_{1}\right)_{0}, \ldots,\left((z)_{\ell}\right)_{0},(z)_{l+1}\right) \wedge \forall y^{\prime}<y \neg R((z))_{0}, \cdots(z)(l), j^{i}\right)\right)\right) \text {. }
\end{aligned}
$$

((3) is handled even easier, it $f(\vec{c})=f_{x}(g(\vec{a}, x)=0)$ where $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is reputable and is it the from $g(\vec{a}, x)=\left(\mu_{y}(h(\vec{a}, x, y)=0)\right)_{0}$, thea

$$
\begin{aligned}
f(\vec{a})= & \left(\mu_{2}\left((z)_{0}=\mid(z)_{1}\right)_{0} \wedge h\left(\vec{a},(z)_{1},(z)_{2}\right)=0 \wedge\left((z)_{2}\right)_{0}=0\right. \\
& \left.\left.\wedge \forall u<(z)_{1}{ }^{x} h\left(\vec{a},(z)_{1}, u\right) \neq 0\right)\right)_{0} .
\end{aligned}
$$

Cor (Normal form for sets). Each computable set $S \subseteq W^{k}$ is of the firm

$$
S^{\prime}(\vec{a}) \Leftrightarrow \exists_{x} R(\vec{a}, x)
$$

for som primitive recursive set $R s \mathbb{N}^{k+1}$.
Proof. $\mathbb{1}_{s}(\vec{x})=\left(\mu_{x}(R(\vec{a}, x))\right)_{0}$ for sone prim. rec. $R \leq \mathbb{N}^{k+1}$. Thus,

$$
\int(\vec{a}) \Leftrightarrow \exists x\left(R(\vec{a}, x) \wedge(x)_{0}=1\right)
$$

and " $R(\vec{a}, x) \cap(x)_{0}=1$ " is primitive recursive.
Parcueterization of computable and prinitive recarsier functions.
Def. For a subset $R \subseteq X \times Y$, where X, Y ane sets, and $x_{2} \in X, s_{0} \in Y$, we call $R_{x_{0}}:=\left\{y \in Y:\left(x_{0}, y\right) \in R\right\}$ and $R^{y_{0}}:=\left\{x \in X:\left(x, y_{0}\right) \in R\right\}$ the y vertical section of R at x_{0} and the horizontal section of R at $y 0$, resp.

For a tuition $f: X \times Y \rightarrow Z$, here $X, Y Z$ ire sec, ant $x_{0} \in X, y_{0} \in Y$, vi cull the Eunchics $f_{x_{0}}: Y \rightarrow Z$ and $f^{y_{0}}: X \rightarrow Z$

$$
y \mapsto f\left(x_{0}, y\right)
$$

$$
x \mapsto f(x, y)
$$

the vertical section of f at x_{0} and the horizontal section of f at y_{0}.
Def. For a clan Γ_{k} of subsets of \mathbb{N}^{k}, a parametecization for Γ_{k} is a relation $P \leq \mathbb{N} \times \mathbb{N}^{k}$ such Ut for all $R \in \Gamma$, there is $c \in \mathbb{N}$ sh that $R=P_{c}$. Siniluty, hor a com Δ_{k} of fractions $\mathbb{N}^{k} \rightarrow \mathbb{N}$, a para ectecizction for Δ_{k} is a function $F: \mathbb{N} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$ such the tor each $f \in \Gamma$, there is $c \in \mathbb{N}$ such ht $f=F_{c}$.

The following method due to Cantor gives a way ho prove that sone clones at relatione/tengions that ane closed nobler "complements" do not adust a parcometerization Ult belocss ho the save clans.

Diagonatizckion (Cantor). For any set X and any $R \subseteq X \times X$, the set

$$
\text { AutiDiag }:=\{x \in X:(x, k) \notin R\}
$$

is not a vertical or horizoutal fiber of R, i.e. $D x_{0,1}, \in X$ s.t.

$$
\text { Auti } \text { Diag }_{R}=R_{x_{0}} \text { or }=R^{y_{0}} \text {. }
$$

Actiliag Prool. If Autiding $=R_{x_{0}}$ ther

$$
\begin{aligned}
x_{0} \in A_{u t i} \operatorname{Ning}_{R} \Leftrightarrow x_{0} \in R x_{0} & \Leftrightarrow\left(x_{0} x_{0}\right) \in R \\
& \Leftrightarrow x_{0} \notin A_{\text {atidicy }} .
\end{aligned}
$$

We can do the same witt functions:

Function Diaffonalization. For any seff X, Y wif distinct $y_{1,} y_{2} \in Y$, and any tunchion $F: X \times X \rightarrow Y$, he tuction AntiDiag $: X \rightarrow Y$, detied by $x \mapsto\left\{\begin{array}{ll}y_{1} & \text { if } F(x, x) \neq y_{1} \\ y_{2} & \text { otherwise }\end{array}\right.$, is not a vertical or horizontal fiber of f, i.e. $\nexists x_{0} \in X$ and $y_{0} \in Y$ s.t. Aatidiay $_{F}=F_{x_{0}}$ or AatiDing $=F^{\%}$.

